...
首页> 外文期刊>Polymer Composites >Investigation on mechanical, dynamic mechanical analysis, thermal conductivity, morphological analysis, and biodegradability properties of hybrid fiber mats reinforced HLCE resin nanocomposites
【24h】

Investigation on mechanical, dynamic mechanical analysis, thermal conductivity, morphological analysis, and biodegradability properties of hybrid fiber mats reinforced HLCE resin nanocomposites

机译:Investigation on mechanical, dynamic mechanical analysis, thermal conductivity, morphological analysis, and biodegradability properties of hybrid fiber mats reinforced HLCE resin nanocomposites

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Hybrid composites are created by the combination of natural fibers (cotton, bamboo, jute, etc.) and synthetic fibers (glass) reinforced hybrid/natural/synthetic resin matrix composites which have good mechanical properties due to reasons of processability, reusability, renewability, and good biocompatibility compared with synthetic composites. Composites made of hybrid resin can replace epoxy resin and increase both biodegradability and environmental protection. In this work, NaOH untreated and treated hybrid fiber mats with volume (2, 4, and 6) % of nanofiller (NCF) mixed in each composition in hybrid resin to form hybrid composites are prepared by compression Hand‐lay‐up technique and then investigated. Hybrid composites are examined by utilizing the following equipment Fourier transform infrared spectrometry (FT‐IR), dynamic mechanical analysis (DMA), thermal conductivity test, and biodegradability property is also studied in this paper. The results of the experiments have demonstrated that the treated H1 fiber mats reinforced with hybrid lannea coromandelica epoxy (HLCE) matrix resin at 4% vol% of NCF have superior compression strength (67.8 MPa). The maximum thermal conductivity of 0.35 W/mK is found in hybrid composites with treated H3 fiber mat and 4% NCF reinforcement in HLCE matrix. According to the findings of dynamic mechanical analysis (DMA), the results indicate that untreated and treated hybrid composites have the highest storage modulus and the lowest damping factor in comparison with HLCE resin. FTIR analysis is used to identify the presence of chemical elements in hybrid resin and hybrid composites.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号