...
首页> 外文期刊>Polymer Composites >Thermally conductive and mechanically strengthened bio‐epoxy/boron nitride nanocomposites: The effects of particle size, shape, and combination
【24h】

Thermally conductive and mechanically strengthened bio‐epoxy/boron nitride nanocomposites: The effects of particle size, shape, and combination

机译:Thermally conductive and mechanically strengthened bio‐epoxy/boron nitride nanocomposites: The effects of particle size, shape, and combination

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Bio‐epoxy composites containing boron nitride (BN) particles with different size and shape (0D spherical micro‐ and nanoparticles, 1D nanotubes (T), and 2D nanosheets (S)) are prepared and revealed appropriate thermal conductivity, thermal stability, and mechanical properties. Systems containing one or two BN nanoparticles showed evenly dispersed structures because of applying high‐shear, ultrasonic, or combination of these methods. Microscopic analysis proved that high‐shear assisted ultrasonic technique ended up in an homogeneously dispersed BN nanoparticles in the epoxy matrix. The combination of platelet‐like and tubular nanoparticles synergistically enhanced both the thermal stability and thermal conductivity of epoxy. Differential scanning calorimetry (DSC) thermographs appeared a sharp peak demonstrating excessive thermal energy released because of network formation of BN conductive fillers. The bi‐oepoxy containing equal weight fractions of T and S (1:1 w/w ratio) showed the highest thermal conductivity and tensile strength values of 2.21 W/m.K and 80 MPa, respectively. In conclusion, properties of epoxy nanocomposites are affected by the filler network formation, such that conductive incorporation of 3 wt.% of BN platelet‐like and nanotubes increased thermal conductivity up to 1400% and mechanical properties up to 50% with respect to the neat epoxy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号