...
首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >A numerical study of capillary pressure-saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer
【24h】

A numerical study of capillary pressure-saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer

机译:毛细管pressure-saturation的数值研究超临界二氧化碳的关系(CO2)注入深陷盐碱含水层

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon capture and sequestration (CCS) is expected to play a major role in reducing greenhouse gas in the atmosphere. It is applied using different methods including geological, oceanic and mineral sequestration. Geological sequestration refers to storing of CO2 in underground geological formations including deep saline aquifers (DSAs). This process induces multiphase fluid flow and solute transport behaviour besides some geochemical reactions between the fluids and minerals in the geological formation. In this work, a series of numerical simulations are carried out to investigate the injection and transport behaviour of supercritical CO2 in DSAs as a two-phase flow in porous media in addition to studying the influence of different parameters such as time scale, temperature, pressure, permeability and geochemical condition on the supercritical CO2 injection in underground domains. In contrast to most works which are focussed on determining mass fraction of CO2, this paper focuses on determining CO2 gas saturation (i.e., volume fraction) at various time scales, temperatures and pressure conditions taking into consideration the effects of porosity/permeability, heterogeneity and capillarity for CO2-water system. A series of numerical simulations is carried out to illustrate how the saturation, capillary pressure and the amount of dissolved CO2 change with the change of injection process, hydrostatic pressure and geothermal gradient. For example, the obtained results are used to correlate how increase in the mean permeability of the geological formation allows greater injectivity and mobility of CO2 which should lead to increase in CO2 dissolution into the resident brine in the subsurface. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:碳捕捉和封存(CCS)在减少温室气体中发挥重要作用在大气中。方法包括地质、海洋和矿物封存。在地下地质储存二氧化碳的形成包括深盐碱含水层(员)。这个过程诱发多相流体流动除了一些溶质传输行为液体和之间的化学反应在地质矿产的形成。工作,一系列的数值模拟进行调查注入和超临界二氧化碳在地区体育会的交通行为在多孔介质两相流除了研究不同参数的影响如时间尺度,温度,压力,渗透率和地球化学条件超临界二氧化碳注入地下域。关注确定二氧化碳的质量分数,本文在确定二氧化碳气体饱和度(例如,体积分数)在不同时间尺度,温度和压力条件考虑的影响孔隙度、渗透率、异质性和毛细现象CO2-water系统。进行了数值模拟说明饱和,毛细管压力和溶解的二氧化碳的数量变化注入过程的变化,静水压力和地温梯度。结果是用于关联增加的平均渗透率地质形成允许更大的吸水和移动应导致二氧化碳的增加在二氧化碳溶解到居民的盐水地下。工程师。保留。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号